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Disclinations dynamics in confined nematic liquid crystals: strong
anchoring

M. A. SHAHZAMANIAN and E. KADIVAR*

Department of Physics, Faculty of Sciences, University of Isfahan, 81744 Isfahan, Iran

(Received 15 January 2006; in final form 22 May 2006; accepted 22 May 2006 )

We have investigated the dynamics of pair annihilation of disclination lines in strong
anchoring. This work is based on the Frank free energy. The director angle, w(x, y, z), is
obtained by the continuous theory. We show that the form of the viscous force in a confined
nematic liquid crystal and in strong anchoring is a function of the initial distance between the
two disclination lines. The asymptotic velocity, vasy, is also a function of the initial distance.
Our theoretical result on the asymptotic velocity is in good agreement with previous
experimental results.

1. Introduction

Nematic liquid crystals are systems which are position-

ally disordered, but reveal a long range orientational

order. This property is described on a mesoscopic level

by a unit vector field n(r), the director. Due to the

absence of a permanent polarization in the nematic

phase, the director indicates the orientation, but has

neither head nor tail. This particular feature yields
interesting defect structures in nematic liquid crystals.

For example, the director field shows line defects in

three dimensions (or, equivalently, point defects in two

dimensions), called disclinations. Disclinations with

topological charge + 1
2

are possible and stable in

nematics. Disclinations are never isolated, being subject

to the anchoring forces arising from the substrates of

the cell containing the liquid crystal. As a consequence,
in a confined geometry, the substrate anchoring is

expected strongly to influence the interactions between

defect lines.

To our knowledge, there have been only a few papers

published on the dynamics of disclination lines in the
bulk or in a confined geometry. The disclination line

near substrates has been studied. The force between the

disclnation line and the glass plate was calculated by de

Gennes [1]. The forces between the disclination line and

concave lens in strong anchoring and in weak anchoring

were studied by Biscari et al. [2]. Two parallel

disclination lines of opposite strengths have been

broadly investigated in the literature. Denniston et al.
used a lattice Boltzmann algorithm to simulate liquid

crystal hydrodynamics [3]. The pair annihilation of

straight line defects with strength + 1
2

in a bulk nematic

system was studied by Svensek and Zumer [4]. Toth

et al. showed that the annihilation velocity for two

parallel and isolated line defects would depend on the

topological charge of the defects [5]. The relaxation

dynamics of a dipole of +1/2 and 21/2 disclination lines

in a confined geometry was studied by Bogi et al. [6]. In

their experimental set-up, the nematic liquid crystal

5CB (pentylcyanobiphenyl) was sandwiched between a

planar glass plate and a convex spherical lens. The

sample was placed in an oven kept at DT50.2uC below

the nematic clearing temperature. They then injected a

short pulse of hot air into the oven to heat the liquid

crystal to the isotropic phase. Shortly after the pulse,

the sample temperature decreased to the oven tempera-

ture and the nematic phase was restored. The transition

from the high symmetry isotropic phase [O(3)] to the

lower symmetry nematic phase (D‘h) generated topolo-

gical line defects. Bogi et al. investigated the dipole

annihilation dynamics experimentally. They obtained

the asymptotic velocity, vasy, versus the thickness of the

cell, d, experimentally and theoretically. In their

theoretical consideration, the form of bulk viscous force

was taken into account. In this paper, we wish to

calculate the viscous force and driving force in the

presence of the surface contribution.

The aim of this paper is to present the solution to the

pair annihilation of straight disclination lines with

strengths ¡1/2 in confined nematic liquid crystals and

in strong anchoring. In the first stage we will find the

director field by minimizing the total energy. In § two,

the driving force is obtained from the total free energy.

In § three, we solve the equations of nematodynamics to*Corresponding author. Email: e_ kadivar@yahoo.com
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obtain the viscous force in the confined state and in

strong anchoring (in the absence of fluid flow). Writing

an equation of motion, we derive the velocity of

disclinations in the final section and introduce a critical
thickness of the cell, dc, in which the dominant role of

the bulk and the anchoring forces will change.

2. Driving force

As a first step, we define the coordinate frame (x9, y9, z9)

used in this work (figure 1). We assume that two

substrates are fixed at z0~+ d
2
. The easy axis on the two

substrates is along the y9-axis. Now, consider a

disclination line which is located in x950 with a

strength m~ 1
2
, and another in x95x90 with a strength

m~{ 1
2

(at zero time, t50). Each disclination line is
perpendicular to the substrate, i.e. parallel to the z9-axis.

We restrict our attention to the planar configuration

and strong anchoring. Consequently, the director field

lies in planes parallel to the substrates (in the x9y9-

plane). The director, n, make an angle w with the y9-axis;

this angle is a function of x9, y9 and z9. Far from the

disclinations, n is uniformly oriented along the anchor-

ing easy axis w5w050. Hence we can write

n~ sin w, cos w, 0ð Þ: ð1Þ

During the annihilation of defects, we see two different

regimes. In the first, the asymptotic velocity of

disclinations is constant [6]. In this regime, the distance

between the two disclination lines along the x9-axis is
larger than the distance between the extinction

branches, f0, along the y9-axis. In the second regime,

this distance is smaller than f0 and the distance between

defects follows a square-root time law [1, 6]. In this

paper, we wish to investigate the dynamics of two

disclination lines in the first regime.

The free elastic energy may be written as

F0~ 1

2

ð
K1 +:nð Þ2zK2 n:+|nð Þ2zK3 n|+|nð Þ2
h i

dx0 dy0 dz0

z
K2

2L

ð
sin2 ws

� �
dx0 dy0

ð2Þ

where K1, K2 and K3 are, respectively, the splay, twist,

and bend elastic constants; ws is the surface director angle

with the y9-axis and L is the anchoring extrapolation

length. The first integral in equation (2) describes the

bulk elastic energy, while the second term represents the

Rapini–Papoular anchoring energy [1]. We only consider

the twist elastic constant for surface energy because the

director field lies in the plane parallel to the substrates.

To simplify the calculation we will use the two constant

approximation, K15K35K, of the free energy. By

inserting equation (1) into equation (2) we obtain

F0~ Kd

4p

ð
Lw

Lx

� �2

z
Lw

Ly

� �2

z
Lw

Lz

� �2
" #

dx dy dzz
Kd2

8p2L

ð
sin2 ws

� �
dx dy ð3Þ

where according to Bogi et al. [6], for strong anchoring

we may define z~ 2p
d

z0, y~ K2

K

� �1
22p

d
y0 and x~ K2

K

� �1
22p

d
x0. It

is mentioned by Bogi et al. [6] that in the weak anchoring

case the length l, which is related to the extrapolation

length L, appeared instead of d in the dimensionless

variables x, y and z. It is noted that the new domains of

integrations contain the coefficient K2, (see equation 9).

By minimizing the free energy with respect to w, we

can find w(x, y, z). By using the Euler–Lagrange

equations we get

L2w

Lx2
z

L2w

Ly2
z

L2w

Lz2
~0: ð4Þ

Consider a disclination line which is located in x950

and another in x95x90 at zero time, t50. The director

field around and between the two disclination lines can

be obtained from the above Laplace equation by applying

the boundary condition. As already mentioned, far from

disclination lines the director n is uniformity oriented

along the easy axis; thus if r5(x, y) is the point from the

disclinations in the xy-normalized plane, then

n? 0, 1, 0ð Þ as r??: ð5Þ

The solution of the Laplace equation, equation (4), is

w~
1

2
arctan

2 sinh y sin z

sinh2 y{sin2 z

� �
z

1

2
arctan

x

y

� �
{

1

2
arctan

x{x0

y

� �
: ð6Þ

This angle, w(r), has the following properties:

(1) w(r) satisfies equation (4) and is regular except on

the two lines.

Figure 1. Schematic view of the cell configuration studied in
this article. The bottom and top plates are situated at z952d/2
and z95d/2. The anchoring at the plates is such that the
director at the surface is aligned along the y9-axis. Two
disclination lines are located in x950 with strength m51/2 and
in x95x90 with strength m521/2.

(3)

(6)
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(2) w(r) does not diverge far from the lines.

(3) w(r) increases by p if, starting from point r, we make

one turn around the line and come back to r.

It is noted that in the weak anchoring, the extrapola-

tion length appear in the w implicitly [1]. We show a

two-dimensional cross-section of the two line defects,

equation (6), for z950 and x90564 mm in figure 2.

The surface director angle in equation (2), ws, can be
derived from the balance between the elastic and surface

torques [1]:

Lw

Lz

����
z~p

~
d

4pL
sin 2wsð Þ: ð7Þ

By using equation (6) in the above equation we have

ws~
1

2
arcsin

4pL

d sinh y

� �
: ð8Þ

Finally, by using equations (6) and (8) in equation (3),

and after some straightforward calculations we obtain

F0~ Kd

16p

ð2p x00{a0
� �

d

K2

K

� �1
2

2pj0

d

K2

K

� �1
2

dx

ð?
{?

dy

ðp
{p

dz
1

x2zy2
z

1

x0{xð Þ2zy2
z

(

4

sinh2 yzsin2 z
{

2y2

x2zy2½ � x0{xð Þ2zy2
h iz

2x x0{xð Þ
x2zy2½ � x0{xð Þ2zy2

h i
9=
;

z
Kd2

8p2L

ð2p x00{a0
� �

d

K2

K

� �1
2

2pj0

d

K2

K

� �1
2

dx

ð?
{?

dy sin2 1

2
arcsin

4pL

d sinh y

� �� 	
:

ð9Þ

Our numerical investigation, figure 2, on the distortion

of the director field indicates that the elastic distortion

is mostly confined in the region between the two

disclination lines. Since the distance between these lines

is of the order of a micrometer and the width of substrate

is of the order of a centimeter, one can choose the

integration boundaries on dimensionless y as 2‘ and ‘.

Now, the integration on x9 is performed on the first

regime of annihilation dynamics, from j9 to x9–a9; in

dimensionless units, x~ 2pj0

d
K2

K

� �1
2 to x~

2p x0
0
{a0ð Þ

d
K2

K

� �1
2. a9

is the core radius of the disclination line, x90 is the initial

distance between the disclination lines and j95x90–u9,

where u9 is a distance within which the velocity of the

disclinations is constant [1].

By performing the integrations in the above equation

we obtain the total free energy

F0~ Kpd

8
ln

x00{a0

j0

� �
{ln

a0

x00{j0

� �� 	
z

4 K2Kð Þ
1
2 x00{j0
� �

Cz
p

2
ln

d

pL

� �
z

p

2
{arctan

Lp

d

� �� 	ð10Þ

where C~
Ð 1

0
1
t
arctan tð Þdt~0:916 is the Catalan

number.

The driving force, Fd, can be calculated from the total

free energy

Fd~{
LF0
Lx00

: ð11Þ

The core radius of the disclination line, a9, is much

smaller than x90, so

Fd^{
Kpd

8x00
{

Kpd

8 x00{j0
� �{Fe ð12Þ

Figure 2. The director field of two annihilation topological line defects with strength m5¡1/2 in the middle of the slab.

(9)
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where

Fe~4 KK2ð Þ
1
2
p

2
{arctan

Lp

d

� �
zCz

p

2
ln

d

pL

� �� �
: ð13Þ

The first two terms of the above equation arise from the

anchoring energy, while the last two terms come from

the bulk energy. The total driving force is an attractive

force.

In strong anchoring, L%d, Fe may be written as

Fe^4 KK2ð Þ
1
2
p

2
{

Lp

d
zCz

p

2
ln

d

pL

� �� �
: ð14Þ

3. Viscous force

We intend to calculate the viscous force acting on two

disclination lines with strength m~+ 1
2

moving with

constant velocity vasy along the x9-axis in strong

anchoring. According to Blank et al. and Oswald et al.

[7, 8], there is no backflow effect in strong anchoring. In

the absence of fluid flow, V950, the dissipation of

energy created by the rotation of the director in a

nematic liquid crystal may written as [4]

T
:
S~

ð
h:Nd3r0: ð15Þ

The dissipation of energy has an additional term which

relates to dissipation by shear flow. This term is zero in

the absence of fluid flow. h and N in equation (15)

are defined as follows: the molecular field, h, may be

written as

hm~c2naAamzc1Nm ð16Þ

together with the relationships

Aab~
1

2

LV 0b
Lx0a

z
LV 0a
Lx0b

" #
ð17Þ

c1~a3{a2 ð18Þ

c2~a2za3~a6{a5 ð19Þ

and the rate of change of the director with respect to the

back ground fluid, N, may be written as [4]

N~
:
n{v|n ð20Þ

where v~ 1
2
+0|V0 and

:
n~dn=dt.

The coefficients ai are usually called the Leslie

coefficients [4].

In the absence of fluid flow, the second term of

equation (20) is zero. By inserting equations (1) and (6)

into (20) we get

N~vasy cos wi0{sin wj0½ � Lw

Lx0

� �
ð21Þ

where i9 and j9 are unit vectors along the x9 and y9-axes,

respectively. In the absence of fluid flow, the first term

in equation (16) is zero and the molecular field, h, is

obtained by inserting equation (21) into (16).

By substituting the expressions for h and N into

equation (15) we have

T
:

S~c1v2
asy

d

8p

ð2p
x00{a0
� �

d

K2

K

� �1
2

2p
j0

d

K2

K

� �1
2

dx

ð?
{?

dy

ðp
{p

dz
y2

x2zy2ð Þ2
z

(

y2

x0{xð Þ2zy2
h i2

z
{2y2

x2zy2½ � x0{xð Þ2zy2
h i

9>=
>;

ð22Þ

where the integration boundaries are the same as the

integration boundaries of equation (9). By performing

the integrations in equation (22) we obtain

T
:
S~c1v2

asy

pd

4
D ð23Þ

where D is a dimonsionless parameter and equal to

D~
1

2
ln

x00
j0

� �
{

1

2
ln

a0

x00{j0

� �
{

2

x00
x00{j0
� �

: ð24Þ

The viscous force, Fu, can be obtained from the

dissipation of energy. For constant velocity, the total

rate of energy dissipation is Fuvasy, so

Fu~c1vasy
pd

4
D: ð25Þ

It should be noted that the viscous force per unit

length of the disclination line, Fu/d, is independent of

the thickness of the cell, d. As is clear from equa-

tions (24) and (25), the viscous force is a function of x90

and j9.

To generalize our method to the case of a disclination

line moving in a bulk sample of size R, we should

consider only the first term in equation (22). By

performing the integrations, the viscous force per unit

length, fu, is

fu~c1vasy
p

8
ln

R

a

� �
: ð26Þ

This result was obtained by Ryskin and Kremenetsky

[9], Imura and Okano [10] and de Gennes [11]. Ryskin

et al. have also shown that in the quasi-static picture,

this force does not diverge with sample size, R. The

divergence with sample size in equation (26) is, as shown
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already by Ryskin et al., an artifact of the quasi-static

approximation.

4. Asymptotic velocity

The equation of motion of the two disclination lines, in

static equilibrium and in the coordinate frame where

one of them is at rest, is given by

FdzFv~0: ð27Þ

By inserting equations (12) and (25) into (27) we obtain

vasy~
K

2Dx00c1

z
K

2D x00{j0
� �

c1

z
4Fe

c1dpD
: ð28Þ

The asymptotic velocity is a function of x90, j9 and d. In

the cases in which j9 and d are constant, our theory

shows that the velocity decreases with increasing initial

distance, x90.

The calculated asymptotic velocity is consistent with

the experimental result of Bogi et al. The nematic liquid
crystal in their experiments is 5CB; its parameters are

K252.4610212 N, K51610212 N, a9510 nm [6] and

L50.2 mm [12]. The experimental and calculated values

of vasy with d513 mm, x90564 mm, j9513 mm [1] are 29

and 29.02 mm s21, respectively. We see good agreement

with experimental and theoretical results.

Let us examine our result in equation (28) for the bulk

case, dR‘. In this case we obtain

vbulk
asy ~

K

2Dx00c1

z
K

2D x00{j0
� �

c1

: ð29Þ

As predicted intuitively by de Gennes [11], equation (29)

indicates that in the quasi-static picture, there is a one-to-

one relationship between the velocity and the distance.

By deriving the velocity with respect to d we can find
the critical thickness, dc, which obeys the following

equation

Lpdc

p2L2zd2
c

{
p

2
ln

dc

pL

� �
zarctan

Lp

dc

� �
~C ð30Þ

where C is the Catalan number. This critical thickness,

dc, occurs at almost 0.75 mm for planar anchoring SiO

with anchoring extrapolation length of L50.2 mm. We
predict that this critical thickness is independent of the

elastic constants of the liquid crystal, Leslie coefficients

and initial distance, and depends only on the extra-

polation length L. If we increase the extrapolation

length, the critical thickness will also increase.

In cases in which j9 and x90 are constant, our theory

shows that for d,dc, the asymptotic velocity increases

with increasing thickness of the cell, d; it is noted that our
theory cannot be applied for d,L. But for d.dc the

asymptotic velocity decreases with increasing d. Then the

velocity has a maximum value at the critical thickness. As

we show, in thicknesses between L and dc, the important

role of the anchoring force [the first two terms in
equation (13)] can be seen, whereas for d.dc the

dominant role of the bulk force should be considered.

5. Conclusion

The free energy provides one way of investigating

problems in nematic liquid crystals. This energy contains

two terms: bulk and anchoring. The director field is

calculated by minimizing the free energy together with

applying the boundary condition for strong anchoring.

This is a function of x9, y9 and z9. By examining the

dissipation of energy, the viscous force acting between

two disclination lines in the confined state is obtained.
Bogi et al. have considered the director field to be

independent of the variable x9. If one follows this idea,

the density of dissipation of energy would be zero. We

cannot accept this result since we have a rotation of

director during motion of the disclination lines. By using

the equation of motion, the asymptotic velocity is

calculated. We find that the asymptotic velocity increases

with increasing d until a critical thickness, dc is reached.
This critical thickness depends only on the extrapolation

length L. It is independent of Leslie coefficients, elastic

constants of the liquid crystals and initial distance. This

critical thickness occurs where the dominant role of the

bulk and the anchoring terms in the equation of motion

changes. The asymptotic velocity depends on the initial

distance between two disclination lines. It is smaller for

two widely separated disclination lines than for lines
close together. This effect must therefore be considered in

experiment investigations.

References

[1] P.G. de Gennes, J. Prost. The Physics of Liquid Crystals,
Clarendon Press, Oxford (1995).

[2] P. Biscari, J. Sluckin. Eur.J.appl.Math., 13, 225 (2001).
[3] C. Denniston, E. Orlandini, J.M. Yeomans. Phys. Rev. E,

63, 056702 (2001).
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